
STRATA
Open Source Market Risk

STEPHEN COLEBOURNE

• Java Champion, regular conference speaker

• Best known for date & time - Joda-Time and JSR-310

• More Joda projects - http://www.joda.org

• Major contributions in Apache Commons

• Blog - http://blog.joda.org

• Worked at OpenGamma for 6 years

http://www.joda.org
http://blog.joda.org

OPENGAMMA

• Founded in 2009

• Financed by Venture Capital

• Mission to bring Open Source values to finance industry

• Focus on Market Risk Analytics and Market Structure

MARKET RISK

MARKET RISK

• Providing pricing and analytics on a financial portfolio

• “present value (NPV) of an interest rate swap”

• “PV01 of a forward rate agreement (FRA)”

• “vega and gamma of an FX vanilla option”

• “examine the portfolio against a set of scenarios”

COMPONENTS FOR MARKET RISK

• Pricing/Analytic models

• Trade representations - for each supported asset class

• Market data representations - quotes, curves, surfaces, etc.

• Calibration - curves, surfaces, etc.

• Market data management and Scenario creation

• Reference data - holiday calendars, securities

• Basics - schedules, day counts, currencies, etc.

BUILD, BUY OR OPEN SOURCE?

• Build it in-house

• Buy from a vendor

• Open Source

• QuantLib (C++, with exports to other languages)

• Strata (Java/JVM)

STRATA

OVERVIEW

• Open Source - Apache v2 license

• Lightweight, easy-to-use library

• Just jar files - no servers or databases needed

• Released in Maven Central

• Foundation for OpenGamma commercial products

Commons

Trade Model

Market
Data

Pricing &
Analytics

Measures

Data Mgmt

Business day conventions, currencies, day counts, holidays,
identifiers, indices, roll conventions, time-series

Products, trades, securities

Built-in pricers
Sensitivities
Curve framework
Interpolators

Calculation API, scenarios, job execution
Calc functions

Market Data API
Data sourcing
Scenarios

Live data providers

Data sources
Loaders

Source integration

Holiday calendars

Day counts

Currencies

Asset classes

Indices

Pricers

Market data types

Perturbations

Config types

Filters

Measures

Reporting Simple, yet powerful, reporting facilities
Report templates

QUICK START

• Built in examples

• Up and running in minutes

• Hard coded reference data

• Holidays, indices, conventions

• Simple command line reporting

JAVA 8

• Early decision to use Java 8 for Strata

• Features very beneficial for Market Risk Analytics

• Date and Time

• Streams and Lambdas

• Methods on interfaces

• Affects both macro-level design and micro-level code

DEPENDENCIES

• Guava

• Joda-Beans

• Joda-Convert

• SLF4J

• Commons-Math

• Colt

MODULES

• strata-collect - low-level, arrays, time-series, IO, tuples

• strata-basics - holidays, schedules, indices, reference data

• strata-data - market data containers

• strata-market - market data structures - curves, surfaces, etc

• strata-product - trades, products, securities

• strata-loader - data loaders from csv and xml

• strata-pricer - analytic pricers

• strata-calc - calculation engine, scenarios, market data building

• strata-measure - high-level measures, potentially multi-scenario

TRADES

TRADES

• Trades are simple immutable beans (data objects)

• Built using Joda-Beans

• Use builder or static factory to create

• Real properties and methods with Javadoc

JODA-BEANS

• Source code generator/regenerator

• Just write the fields and add a couple of annotations

• Joda-Beans generates additional high-quality source code

• Mutable and immutable beans

• Provides C# style properties

TRADES AND PRODUCTS

• Trade

• Trade date

• Trade identifier

• Counterparty

• Product

• Financial details of the trade

• Effective/Termination date, notional, rate, index, etc.

TRADES AND PRODUCTS

Trade

ProductProductTrade

FraTrade Fra

FRA

// create Fra using builder

Fra fra = Fra.builder()

 .buySell(BuySell.BUY) // Buy

 .index(IborIndices.GBP_LIBOR_3M) // GBP LIBOR 3M

 .notional(10_000_000) // 10 million GBP

 .fixedRate(0.0085) // 0.85%

 .startDate(LocalDate.of(2016, 9, 14))

 .endDate(LocalDate.of(2016, 12, 14))

 .build();

FRA

// create FraTrade

Fra fra = ...

TradeInfo info = TradeInfo.builder()

 .tradeDate(LocalDate.of(2016, 6, 14))

 .id(StandardId.of(“Trade”, “123456”))

 .counterparty(StandardId.of(“Party”, “654321”))

 .build();

FraTrade trade = FraTrade.of(info, fra);

CONVENTIONS

• Most OTC trades follow market conventions

• Strata includes definitions of some of these conventions

• Avoids repetitive code

FRA CONVENTION

// create FRA from a convention

FraTrade trade =

 FraConvention.of(IborIndices.GBP_LIBOR_3M)

 .createTrade(

 LocalDate.of(2015, 7, 14), // Trade date

 Period.ofMonths(2), // start in 2 months

 BuySell.BUY, // Buy

 10_000_000, // 10 million GBP

 0.012, // 1.2%

 ReferenceData.standard()); // Holiday calendars

SWAP

• Flexible interest rate swap

• Fixed legs support variable interest rates and known amounts

• Float legs support Ibor, Overnight and Inflation

• Stubs support fixed, floating, interpolated and known amount

• Support for variable notional, gearing and spread

• Conventions and Templates available

SWAP

Trade

ProductProductTrade

SwapTrade Swap

RateCalculation

SwapLeg

RateCalculation
SwapLeg

Swap PeriodicSchedule

NotionalSchedule

PaymentSchedule

Ibor
RateCalculation

Fixed
RateCalculation

Inflation
RateCalculation

Overnight
RateCalculation

SWAP

// create swap from a convention

SwapTrade trade =

 FixedIborSwapConventions.GBP_FIXED_1Y_LIBOR_3M

 .createTrade(

 LocalDate.of(2015, 7, 14), // Trade date

 Tenor.TENOR_10Y, // 10 year swap

 BuySell.BUY, // Buy

 10_000_000, // 10 million GBP

 0.014, // 1.4%

 ReferenceData.standard()); // Holiday calendars

SECURITIES

• Two approaches supported

• Define security as and when needed

• Setup reference data map of securities

• Provides ability to use, or avoid, a big security master

SECURITIES AS PRODUCTS

IborFutureOption
Trade IborFutureOption IborFuture

Trade

ProductProductTrade

SECURITIES AS REFERENCE DATA

Trade

IborFutureOption IborFuture

Security

IborFutureOption
Security

IborFuture
SecuritySecurityTrade

ReferenceData used to
lookup SecurityId

ASSET CLASSES

• Swaps, Swaptions, DSF, CMS, Cap/Floor

• FRA, STIR futures, STIR future options

• Bond, Bond futures, Bond future options

• FX forward, NDF, FX swap, vanilla option, single barrier option

• CDS

• Term deposit, Bullet payment

PRICERS

PRICERS

• Lower-level analytics API

• Provides ability to calculate PV, sensitivities, greeks, etc.

• Explain facility to understand how result was calculated

• Operates on resolved trades/products

RESOLVING

• Resolving the trade requires reference data

• Locks in dates to the current holiday calendar rules

• Standard reference data contains hard coded holiday rules

// resolve a swap

SwapTrade trade = …

ReferenceData refData = ReferenceData.standard();

ResolvedSwapTrade resolved = trade.resolve(refData);

RESOLVING

Swap SwapLegSwapTrade

Trade resolved using
ReferenceData

Resolved
SwapTrade

Resolved
Swap

Resolved
SwapLeg

Resolved leg contains full list
of accrual/payment periods,
stubs and notional exchange

USING A PRICER

• Stateless - takes resolved trade and any necessary market data

• Calculates for one trade and one set of market data

• Can usually price at trade or product level

USING A PRICER

// obtain the swap and market data to price against

ResolvedSwapTrade trade = ...

RatesProvider market = ...

// calculate the present value

MultiCurrencyAmount pv =

 DiscountingSwapTradePricer.DEFAULT

 .presentValue(trade, market);

MARKET DATA

MARKET DATA

• Support for all kinds of market data

• Built in classes for FX, quotes, curves, surfaces, etc.

• Many types can be loaded from CSV

• Multi-curve rates calibration

• Scenarios, stored efficiently as arrays

RATES PROVIDER

•RatesProvider is a single, coherent, set of market data

• FX rates, Discount factors, Ibor rates

• Overnight rates, Inflation price indices, Historic fixings

// get discount factors for GBP

DiscountFactors df = ratesProvider.discountFactors(GBP);

double factor = df.discountFactor(date);

MARKET DATA

•MarketData is a container of market data

• Hash-map like

• Keys are MarketDataId<T>

// get curve by identifier

CurveId id = CurveId.of(“Default”, “USD-DSC”);

Curve curve = marketData.getValue(id);

SCENARIO MARKET DATA

•ScenarioMarketData is a container of scenario data

• Hash-map like, where values are arrays

• Keys are MarketDataId<T>

// get curves by identifier

CurveId id = CurveId.of(“Default”, “USD-DSC”);

MarketDataBox<Curve> curves = scenarioData.getValue(id);

// process using a stream (for example)

curves.stream().forEach(curve -> …);

MARKET DATA LOOKUP

• Market data containers hold arbitrary sets of market data

• May hold multiple USD discounting curves

•RatesMarketDataLookup is used to select a coherent set

CurveId usdDscId = CurveId.of(“Default”, “USD-DSC”);

CurveId usdLiborId = CurveId.of(“Default”, “USD-LIBOR”);

// map currency/index to curve

RatesMarketDataLookup md = RatesMarketDataLookup.of(

 ImmutableMap.of(Currency.USD, usdDscId),

 ImmutableMap.of(

 IborIndices.USD_LIBOR_3M, usdLiborId),

 IborIndices.USD_LIBOR_6M, usdLiborId));

COMBINATIONS

MarketData RatesProviderRatesMarketDataLookup+ =

• Many curves
• Keyed by curve ID

• Map currency to curve ID
• Map index to curve ID

• DF by currency+date
• Rate by index+date

MARKET DATA BUILDING

• Can create market data manually, loading from CSV or by factory

•MarketDataFactory can

• Query quotes from a simple provider interface

• Query time-series from a simple provider interface

• Calibrate

• Create scenarios by shifting/bumping

• See SwapPricingWithCalibrationExample

MEASURES

MEASURE-LEVEL API

• Higher-level than pricers

• Stateless - takes resolved trade and any necessary market data

• Calculates for one trade and one or more sets of market data

• ie. supports scenarios

• Only operates on trades, not products

• Scaled output

• eg. PV01 in basis points

USING THE MEASURE-LEVEL API

// obtain the swap and market data to price against

ResolvedSwapTrade trade = ...

RatesProvider market = ...

// calculate the present value

MultiCurrencyAmount pv =

 SwapTradeCalculations.DEFAULT

 .presentValue(trade, market);

USING THE MEASURE-LEVEL API

// obtain the swap and market data to price against

ResolvedSwapTrade trade = ...

RatesMarketDataLookup lookup = ...

ScenarioMarketData market = ...

// calculate the present value for many scenarios

MultiCurrencyScenarioArray scenarioPv =

 SwapTradeCalculations.DEFAULT

 .presentValue(trade, lookup, market);

CALCULATIONS

CALCULATION-LEVEL API

• Highest-level API

• Calculates for many trades and one or more sets of market data

• ie. supports scenarios

• Optional currency conversion

• Multi-threaded

• Results can be received asynchronously

CALCULATION-LEVEL API

• Calculation API result is a grid

• Rows are trades, positions, or similar

• Columns are measures, such as PV, PV01, Par rate

• Mixed portfolio of trades (PV for Swap, FRA and future in one call)

NPV (USD) NPV (GBP) PV01 (USD) Par rate

Trade 1 - Swap 13,487.25 10,176.72 12.7365 0.23

Trade 2 - Swap -34,276.73 -27,273.28 76.2725 0.24

Trade 3 - FRA 12,835.26 9,263.75 -26.8367 0.31

Trade 4 - STIR -965.76 -754.23 1.2676 0.52

CALCULATIONS

•CalculationRunner is entry to Calculation API

• Provides a multi-threaded executor

• Also allow callers to use their own executor

// obtains a multithreaded runner

try (CalculationRunner runner =

 CalculationRunner.ofMultiThreaded()) {

 // use the runner

}

RULES

•CalculationRules defines how to calculate

• Functions mapping from trade type to code

• Reporting currency

• Market data lookup

// setup the rules

CalculationRules rules = CalculationRules.of(

 StandardComponents.calculationFunctions(),

 Currency.USD,

 ratesMarketDataLookup);

CALCULATIONS

• Each column defined by Column

• Measure specifies what to calculate

• Can control reporting currency per column

// specify the columns

List<Column> columns = ImmutableList.of(

 Column.of(Measure.PRESENT_VALUE),

 Column.of(Measure.PRESENT_VALUE, Currency.GBP),

 Column.of(Measure.PV01_CALIBRATED_SUM),

 Column.of(Measure.PAR_RATE));

CALCULATIONS

• Calculation runner is stateless

• Pass in all inputs, get back results

• Separate API allows results to be received asynchronously

// calculate the results

Results results = runner.calculate(

 rules, // How to calculate

 trades, // Trades to process

 columns, // Columns, eg PV, PV01, par rate

 marketData, // Market data

 referenceData); // Reference data

CALCULATION-LEVEL API

NPV (USD) NPV (GBP) PV01 (USD) Par rate

Trade 1 - Swap 13,487.25 10,176.72 12.7365 0.23

Trade 2 - Swap -34,276.73 -27,273.28 76.2725 0.24

Trade 3 - FRA 12,835.26 9,263.75 -26.8367 0.31

Trade 4 - STIR -965.76 -754.23 1.2676 0.52

...

SUMMARY

STRATA v1.0

• Trades are immutable beans

• Pricing/risk logic is stateless, and separate from the trades

• Three levels of pricing/risk API

• Pricer - one trade, one set of market data

• Measure - one trade, one or many sets of market data

• Calc - many trades, one or many sets of market data

STRATA v1.0

• Modern market risk library in Java 8

• Lightweight and easy-to-use, lots of examples

• Good asset class coverage

• Open source, Apache v2 license

• Commercial support available from OpenGamma

http://strata.opengamma.io/

http://strata.opengamma.io/
http://strata.opengamma.io/

THANK YOU

